

Ideal Gas Law(理想氣體定律)

- Boyle's Law:
 V ∝ 1/P (at constant n and T)
- Charles's Law:
 V ∝ T (at constant n and P)
- Avogadro's Law:
 V ∝ n (at constant P and T)

 $-V \propto (n \times T)/P$

• Combine the above expressions, we get

T

Example 5.5 Sulfur hexafluoride (SF₆) is a colorless, odorless, very unreactive gas. Calculate the pressure (in atm) exerted by 1.82 moles of the gas in a steel vessel of volume 5.43 L at 69.5° C.

Reasoning and Solution This problem provides information about the number of moles, volume, and temperature of a gas, but no change in any of the quantities occurs. Therefore, to calculate the pressure we can use the ideal gas equation, which can be rearranged to give

 $P = \frac{nRT}{V}$ = $\frac{(1.82 \text{ mol})(0.0821 \text{ L} \cdot \text{atm/K} \cdot \text{mol})(69.5 + 273) \text{ K}}{5.43 \text{ L}}$

= 9.42 atm

Atmospheric Radiation Radiation is the emission or propagation of energy in the form of a photon or an electromagnetic wave. Radiation is emitted by all bodies in the universe that have a temperature above absolute zero (0 K = -273.15 °C). A blackbody is a body that absorbs all radiation

A blackbody is a body that absorbs all radiation incident upon it.

Atmospheric Radiation

- Almost all the energy balance for the earth is determined by solar heating. Additionally, many reactions are influenced by solar energy.
- $C = \lambda \times v$, where C is the speed of light (3×10⁸ m/s), λ is wavelength, v is frequency.
- Energy of a photon = $E = h \times v = h \times (C/\lambda)$, where h is Planck's constant = $6.6 \times 10^{-34} \text{ J} \cdot \text{s}$
- Radiation with shorter wavelength (or higher frequency) has higher energy.

Typical Wavelengths, Frequencies, Wave numbers, and Energies of Various Regions of the Electromagnetic Spectrum

Name	Typical Wavelength or Range of Wavelengths (nm)	Typical Range of Frequencies ν (s ⁻¹)	Typical Range of Wavenumbers ω (cm ⁻¹)	Typical Range of Energies (kJ einstein ⁻¹) ^a
Radiowave	$\sim 10^8 - 10^{13}$	$\sim 3 \times 10^4 - 3 \times 10^9$	10 ⁻⁶ -0.1	~10 ⁻³ -10 ⁻⁸
Microwave	$\sim 10^7 - 10^8$	$\sim 3 \times 10^9 - 3 \times 10^{10}$	0.1-1	$-10^{-2}-10^{-3}$
Far infrared	$\sim 10^{5} - 10^{7}$	$\sim 3 \times 10^{10} - 3 \times 10^{12}$	1-100	$\sim 10^{-2} - 1$
Near infrared	$\sim 10^3 - 10^5$	$-3 \times 10^{12} - 3 \times 10^{14}$	$10^{2} - 10^{4}$	→ -1-10 ²
Visible				~
Red	700	4.3×10^{14}	1.4×10^{4}	1.7×10^{2}
Orange	· 620	4.8×10^{14}	1.6×10^{4}	1.9×10^{2}
Yellow	580	5.2×10^{14}	-1.7×10^{4}	2.1×10^{2}
Green	530	5.7×10^{14}	1.9×10^{4}	2.3×10^{2}
Blue	470	6.4×10^{14}	2.1×10^{4}	2.5×10^{2}
Violet.	420	7.1×10^{14}	2.4×10^{4}	-2.8×10^{2}
Near ultraviolet	400-200	$(7.5-15.0) \times 10^{14}$	$(2.5-5) \times 10^4$	$(3.0-6.0) \times 10^2$
Vacuum ultraviolet	~ 200-50	$(1.5-6.0) \times 10^{15}$	$(5-20) \times 10^4$	$\sim (6.0-24) \times 10^2$
X ray	~ 50-0.1	$\sim (0.6-300) \times 10^{16}$	$(0.2-100) \times 10^{6}$	$\sim 10^3 - 10^6$
γπαγ	≤0.1	-3×10^{18}	≥108	> 10 ⁶
"For kcal einstein", divide	by 4.184 (1 cal = 4.184 J).			

Wavelength and Energy of Typical Atmospheric Radiation

Name	Typical Wavelength or Range of Wavelengths, nm	Typical Range of Energies, kJ mol ⁻¹
Visible		
Red	700	170
Orange	620	190
Yellow	580	210
Green	530	230
Blue	470	250
Violet	420	280
Near ultraviolet	400-200	300-600
Vacuum ultraviolet	200-50	600-2400
•Compare wit –In the ozon	h bond energies of more molecule, the $O-O_2$ bor	lecules, e.g.: d energy is
-In NO ₂ , the	O–NO bond energy is ab	out 300 kJ mol ⁻¹

Wien's Displacement Law

• $\lambda_{max} = 2897/T$, where λ_{max} is the wavelength of peak blackbody emission (in μ m), T is the absolute temperature of the body (in K).

Example 2.1

Calculate the peak wavelength of blackbody radiative emission for both the sun and the Earth.

Solution

The effective temperature of the sun's photosphere is 5,785 K. Thus, from Equation 2.1, the peak wavelength of the sun's emissions is about 0.5 μ m. The average surface temperature of the Earth is 288 K, giving the Earth a peak emission wavelength of about 10 μ m.

Total Radiation from a Blackbody

 Stefan-Boltzmann Law: E = σ × T⁴, where E is the radiation intensity (W/m²), σ is the Stefan-Boltzmann constant (5.67×10⁻⁸ W•m⁻²•K⁻⁴), T is the absolute temperature of the blackbody (K).

Total Radiation from a Blackbody

Example 2.2

How does doubling the Kelvin temperature of a blackbody change the intensity of radiative emission of the body? What is the ratio of intensity of the sun's radiation compared with that of the Earth's?

Solution

From Equation 2.2, the doubling of the Kelvin temperature of a body increases its intensity of radiative emission by a factor of 16. The temperature of the sun's photosphere (5,785 K) is about twenty times that of the Earth (288 K). Assuming both are blackbodies ($\epsilon = 1$), the intensity of the sun's radiation (63.5 million W m⁻²) is 163,000 times that of the Earth's (390 W m⁻²).

	表 2.	2 直鏈烷類的命	名			
(a) Alkanes (paraffins);烷	碳數 (n)	名稱	化學式 (C _s H _{2s+2})	碳數 (n)	名稱	化學式 (C _s H _{2s+2})
$\begin{array}{lll} & \textbf{C}_{n}\textbf{H}_{2n+2} \\ & \text{ex.CH}_{4} & \text{methane} \\ & \text{CH}_{3}\text{-}\text{CH}_{3} & \text{ethane} \\ & \text{CH}_{3}\text{-}\text{CH}_{2}\text{-}\text{CH}_{3} & \text{propane} \\ & \text{CH}_{3}\text{-}\text{CH}_{2}\text{-}\text{CH}_{2}\text{-}\text{CH}_{3} & \text{n-butane} \end{array}$	1 2 3 4 5 6 7 8	甲烷 (Methane) 乙烷 (Ethane) 丙烷 (Propane) 丁烷 (Butane) 戊烷 (Pentane) 己烷 (Hexane) 庚烷 (Heptane)	$\begin{array}{c} CH_4 \\ C_2H_6 \\ C_3H_8 \\ C_4H_{10} \\ C_5H_{12} \\ C_6H_{14} \\ C_7H_{16} \\ C_8H_{18} \end{array}$	9 10 11 12 13 20 21 30	王烷 (Nonane) 癸烷 (Decane) 十一烷 (Undecane) 十二烷 (Dodecane) 十三烷 (Tridecane) 二十烷 (Icosane) 二十一烷 (Henicosane)	$\begin{array}{c} C_{9}H_{20} \\ C_{10}H_{22} \\ C_{11}H_{24} \\ C_{12}H_{26} \\ C_{13}H_{28} \\ C_{20}H_{42} \\ C_{21}H_{44} \\ C_{30}H_{62} \end{array}$
Cycloalkanes;環烷 C _n H _{2n} Cyclopropane	H3					
Cyclobutane H₂C C H₂C C	С H2 С H2					
Cyclopentane $H_2 C - C$ I I $H_2 C C$ $C H_2$	H2 H2		-			

Alkyl radicals: R;烷基	
CH ₃ methyl	
CH ₃ CH ₂ ethyl	
CH ₃ CH ₂ CH ₂ n-propyl	l I
CH ₃ CH ₂ CH ₂ CH ₂ n-butyl	
(b) Alkenes (olefins) ;烯	
C _n H _{2n}	
ex CH ₂ = CH ₂ ethene(ethylene)	
CH ₃ CH= CH ₂ propene(propylene)	
$CH_3CH_2CH=CH_2$ 1-butene	
CH _x CH ₌ CHCH ₂ 2-butene	
(c) Alkynes :中	
♥n' '2n-2	
ex. $HC \equiv CH$ acetylene	
(d) Aromatics : 芳香烟	
ex henzene : ¥	
HC CH	

	Definitions
• No hy	on-methane hydrocarbons (NMHCs): all the /drocarbons, except methane.
• O fu	xygenated hydrocarbons: when oxygenated nctional groups are added to hydrocarbons.
• R(0)	eactive organic gases (ROGs): NMHCs plus (ygenated hydrocarbons.
• To	otal organic gases: ROGs plus methane.
• Vo cc re	blatile organic compounds (VOCs): organic ompounds with low boiling points that, therefore, badily evaporate.
• C	arbonyls (羰基,C=O): aldehydes plus ketones.
• N pl	on-methane organic carbon (NMOC): NMHCs us carbonyls.

Exercise 2.2. Ammonia (NH₃), nitrous oxide (N₂O) and methane (CH₄) comprise 1×10^{-8} , 3×10^{-5} , and 7×10^{-5} % by mass of the Earth's atmosphere, respectively. If the effluxes of these chemicals from the atmosphere are 5×10^{10} , 1×10^{10} , and 4×10^{11} kg a⁻¹, respectively, what are the residence times of NH₃, N₂O, and CH₄ in the atmosphere? (Mass of the Earth's atmosphere = 5×10^{18} kg.) Solution. From Eq. (2.4) the residence time is given by $\tau = \frac{M}{2}$ where M is the quantity of chemical in the atmosphere, and F the efflux. For NH₃, $M = \frac{1 \times 10^{-8}}{100} (5 \times 10^{18}) \,\mathrm{kg}$ and $F = 5 \times 10^{10}$ kg a⁻¹, therefore, $\tau_{NH_3} = 0.01$ a = 4 days. For N₂O, $M = \frac{(3 \times 10^{-5})}{100} \times (5 \times 10^{18}) \,\mathrm{kg}$ and $F = 1 \times 10^{10} \text{ kg a}^{-1}$, therefore, $\tau_{N_2O} = 150 \text{ a}$. For CH₄, $M = \frac{(7 \times 10^{-5})(5 \times 10^{18})}{100} \text{ kg}$ and $F = 4 \times 10^{11} \text{ kg a}^{-1}$, therefore, $\tau_{CH_4} = 9 \text{ a}$.

Gas	Residence Time
Nitrogen (N ₂)	1.6×10^{7} a
Helium (He)	10 ⁶ a
Oxygen (O_2)	3,000–10,000 a
Carbon dioxide (CO ₂)	3-4a
Nitrous oxide (N ₂ O)	150 a
Methane (CH ₄)	9a
$CFC-12$ (CF_2Cl_2)	>80 a
CFC-11 (CFCl ₃)	~80 a
Hvdrogen (H ₂)	4-8a
Methyl chloride (CH ₃ Cl)	2–3 a
Carbonyl sulfide (COS)	~2a
$O_{zone}(O_3)$	100 days
Carbon disulfide (CS ₂)	40 days
Carbon monoxide (CO)	~60 days
Water vapor ^b	~10 days
Formaldehyde (CH ₂ O)	5-10 days
Sulfur dioxide (SO ₂)	1 day
Ammonia + Ammonium $(NH_3 + NH_4^{\dagger})$	2-10 days
Nitrogen dioxide (NO ₂)	0.5-2 days
Nitrogen oxide (NO)	0.5–2 days
Hydrogen chloride (HCl)	4 days
Hydrogen sulfide (H ₂ S)	1-5 days
Hydrogen peroxide (H_2O_2)	1 day
Dimethyl sulfide (CH-SCH-)	0.7 days

Units	of Concentratio	n of
Atmos	spheric Compos	ition
SI prefixes		

Factor	Name	Symbol	Factor	Name	Symbol
10 ¹	deca	da	10^{-1}	deci	d
10 ²	hecto	h	10^{-2}	centi	с
10 ³	kilo	k	10^{-3}	milli	m
10^{6}	mega	М	10^{-6}	micro	μ
10 ⁹	giga	G	10-9	nano	n
10^{12}	tera	Т	10^{-12}	pico	р
1015	peta	Р	10^{-15}	femto	f
1018	exa	Е	10^{-18}	atto	а
10^{21}	zetta	Ζ	10^{-21}	zepto	Z
1024	yotta	Y	10 ⁻²⁴	yocto	у

Units of Concentration of Atmospheric Composition

• Need units for chemicals in gas phase, liquid phase and solid phase.

Units of Concentration of Atmospheric Composition

- For gas phase:
 - Mixing ratio
 - Partial pressure
 - Number density
 - Mass concentration

Units of Concentration: Gas Phase

Mixing ratio (C_x) : defined as the number of moles of X per mole of air. Remains constant when pressure, temperature or air density changes.

- %
- ppm(v) parts per million
- ppb(v) parts per billion
- ppt(v) parts per trillion
- (v) means by volume

to express the number of pollutants in a

- million (10⁶)
- billion (10⁹)

trillion (10¹²)

molecules of air

	Volume mixing ratio		
Gas	(percent)	(ppmv)	
Nitrogen (N ₂)	78.08	780,800	
Oxygen (O_2)	20.95	209,500	
Argon (Ar)	0.93	9,300	
Neon (Ne)	0.0015	15	
Helium (He)	0.0005	5	
Krypton (Kr)	0.0001	1	
Xenon (Xe)	0.000005	0.05	

Units of Concentration: Gas Phase

Number density (n_x) : defined as the number of molecules of X per unit volume of air. Commonly expressed in units of molecules cm⁻³.

- For example, global average concentration of OH radical is $\sim\!5{\times}10^5$ molecules cm^{-3}
- At STP (1 atm and 0°C), the volume of 1 mole of air is 22.4 L = 22400 cm³. 1 mole of air has 6.02×10²³ molecules.
- Number density of air (n_a) at STP = $(6.02 \times 10^{23})/22400 = 2.69 \times 10^{19}$ molecules cm⁻³

Units of Concentration: Solid Phase

Commonly expressed in units of mass concentration, such as mg m⁻³ or µg m⁻³.

TSP (Total suspended particulates) $\sim 60~\mu g~m^{\text{-}3}$

