AP 3050 Air Pollution Air Pollution and Global Warming: History, Science, and Solutions

Chapter 4: Aerosol Particles in the Polluted and Global Atmosphere

Lecturers: Neng-Huei Lin and Guey-Rong Sheu

Spring 2021

By Mark Z. Jacobson Cambridge University Press (2012)

#### Winter inversion – Dec ~ Feb

#### Salt Lake City

Rush Spedden; rmcleanair.blogspot.com/2007/01/utah-choking-on-pollution.html

The city is situated at 2,240 m above sea level, and because there's less oxygen at this altitude, most of the air pollution is the result of incomplete combustion of hydrocarbons, mainly diesel emissions.

#### Mexico City

Stephanie Maze/www.pollutionissues.com/Ve-Z/Vehicular-Pollution.html

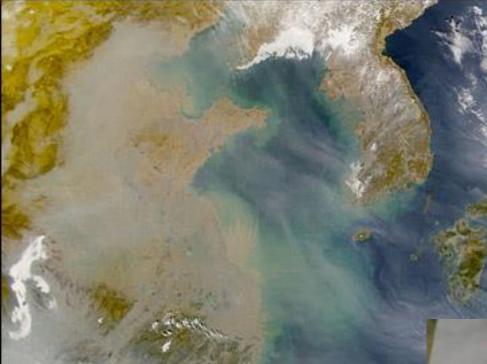
#### Sao Paulo

upload.wikimedia.org/wikipedia/commons/6/6b/Zona\_Leste\_-\_São



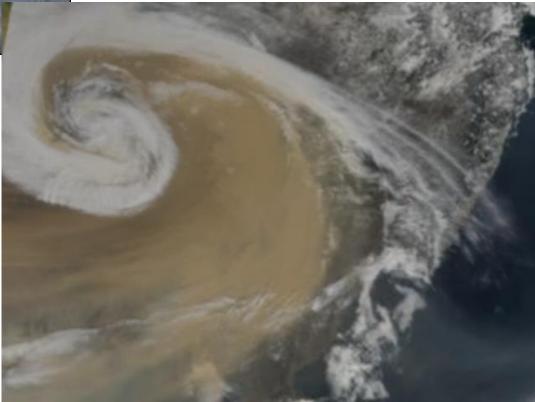
#### Air pollution in São Paulo kills more people than car accidents, breast cancer, and AIDS combined.

#### 20 M people, 7 M cars!






#### **Industry and vehicular traffic; 10,000 may die prematurely.**




Topnews.in



#### Asian Brown Cloud

NASA Satellite Images



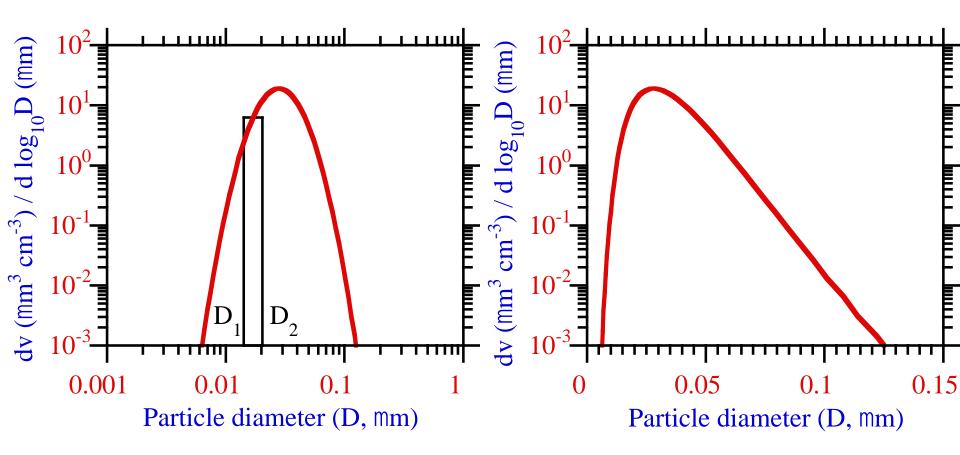
## **Particle Characteristics**

| Mode             | Diameter (µm) | Number (#/cm <sup>3</sup> )          |
|------------------|---------------|--------------------------------------|
| Gas molecules    | 0.0005        | 2.45x10 <sup>19</sup>                |
|                  |               |                                      |
| Aerosol particle | S             |                                      |
| Small            | < <b>0.1</b>  | <b>10<sup>3</sup>-10<sup>6</sup></b> |
| Medium           | 0.1-2.5       | <b>1-10</b> <sup>4</sup>             |
| Large            | 2.5-8000      |                                      |
| Undromotoor no   | rtiolog       |                                      |
| Hydrometeor pa   |               |                                      |
|                  |               |                                      |
|                  |               |                                      |
|                  |               |                                      |
| Raindrops        | 1000-8000     | 0.001-0.01                           |
| Hail             | 5000-115,000  | 0.0001-0.001                         |

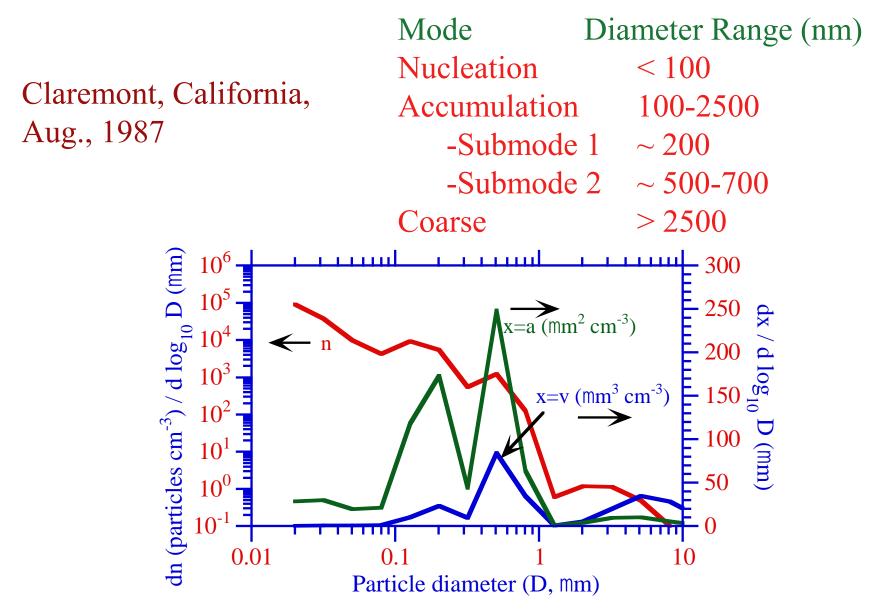
## **Particle Size Distribution (PSD)**

Variation of particle concentration (i.e., number, surface area, volume, or mass of particles per unit volume of air) with size.

Size distribution usually divided into modes: Mode Diameter Range (nm) Nucleation <100 Submode 1 <10 Submode 2 10-100


2500

Accumulation 100 – 2500 Submode 1 ~ 200 Submode 2 ~ 500-700


Coarse

### **Lognormal Distribution**

Describes an individual mode of a size distribution



#### **Ambient Size Distribution**



### **Major Particle Emission Sources**

Sea spray Soil dust Volcanoes **Biomass burning Fossil-fuel combustion** Industrial Miscellaneous

# **Sea Spray Emission**

Form when winds and waves force air bubbles to burst at sea surface. Contain composition of sea water

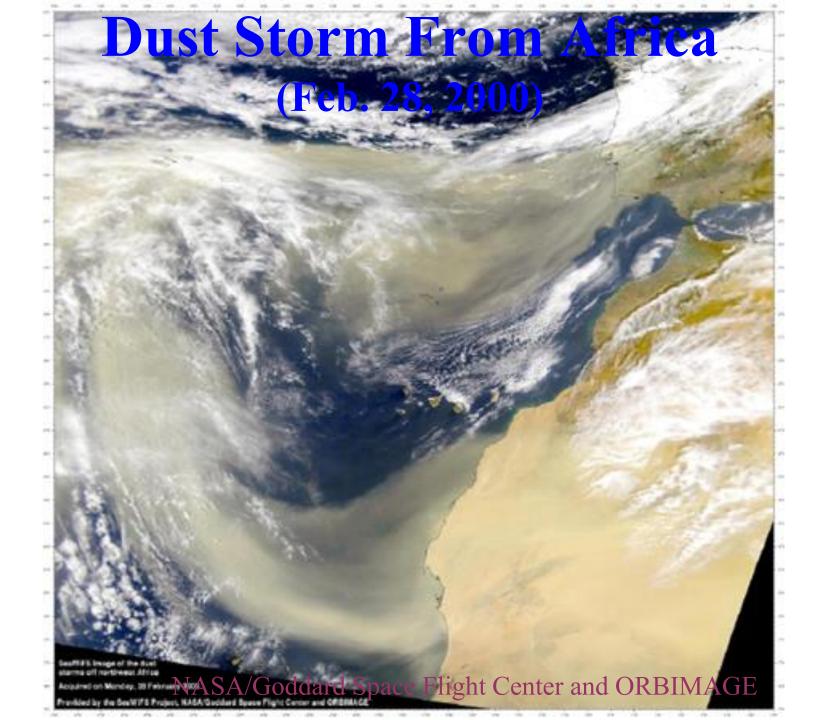
#### Spume drops

Drops larger than sea spray form when winds tear off wave crests.

#### Sea-spray acidification

Reduction in chloride in sea spray drops as sulfuric acid or nitric acid enter the drops.

#### Dehydration


Water loss when drop evaporates in low relativehumidity air.

### **Constituents of Sea Water**

#### **Constituent** Mass percent

96.78 Water Sodium 1.05 Chlorine 1.88 0.125 Magnesium 0.0876 Sulfur 0.0398 Calcium Potassium 0.0386 0.0027 Carbon





### **Breakdown of Rocks to Soil**

• Physical weathering

Disintegration of rocks and minerals by processes not involving chemical reactions. Examples: when stress applied to a rock. Stresses arise due to high pressure under soil or when rocks freeze/thaw or when saline solutions enter cracks and cause disintegration/fracture.

• Chemical weathering Disintegration of rocks and minerals by chemical reaction. Example: Dissolution of gypsum in water:

 $\begin{array}{rcl} CaSO_4-2H_2O(s) &=& Ca^{2+} + SO_4^{-2-} + 2H_2O(aq) \\ Calcium sulfate & Calcium Sulfate Liquid & (5.1) \\ dihydrate (gypsum) & ion & ion & water \end{array}$ 

## **Types of Minerals in Soil Dust**

Quartz -  $SiO_2(s)$  - clear, colorless, resistant to chemical weathering Feldspars (長石) - 50 percent of rocks on Earth's surface Potassium feldspar -  $KAlSi_3O_3(s)$ Plagioclase feldspar - NaAlSi<sub>3</sub>O<sub>3</sub>-CaAl<sub>2</sub>Si<sub>2</sub>O<sub>8</sub>(s) Hematite (赤鐵礦) - Fe<sub>2</sub>O<sub>3</sub>(s) - reddish brown Calcite (方解石) - CaCO<sub>3</sub>(s) - found in limestone Dolomite (白雲石) - CaMg(CO<sub>3</sub>)<sub>2</sub>(s) Gypsum (石膏) - CaSO<sub>4</sub>-2H<sub>2</sub>O(s)- colorless to white Clays - soft, compact, odorous minerals resulting from weathering Kaolinite -  $Al_4Si_4O_{10}(OH)_8(s)$ Illite Smectite Vermiculite Chlorite Organic matter - plant litter or animal tissue broken by bacteria

### **Time For Particles to Fall 1 km**

| Diam. (µm) | Time to Fall 1 km |
|------------|-------------------|
| 0.02       | <b>228 y</b>      |
| 0.1        | <b>36 y</b>       |
| 1.0        | <b>328 d</b>      |
| 10         | <b>3.6 d</b>      |
| 100        | <b>1.1 h</b>      |
| 1000       | <b>4 m</b>        |
| 5000       | <b>1.8 m</b>      |
|            |                   |

Only particles smaller than 10 µm reach the global atmosphere.

## Sarychev, Kuril Islands (June, 2009)

NASA Johnson Space Center

### **Volcanic Emission**

Over 500 volcanos are currently active. Magma contains 1-4 percent gas by mass. Water vapor makes up 50-80 percent of gas mass Some other constituents:

 $CO_2(g)$   $SO_2(g)$  

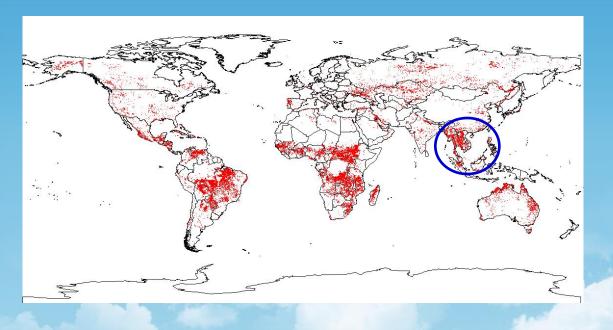
 OCS(g)  $N_2(g)$  

 CO(g)  $H_2(g)$ 
 $S_2(g)$  HCl(g) 

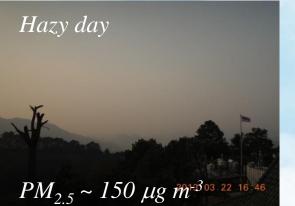
  $Cl_2(g)$   $F_2(g)$ 

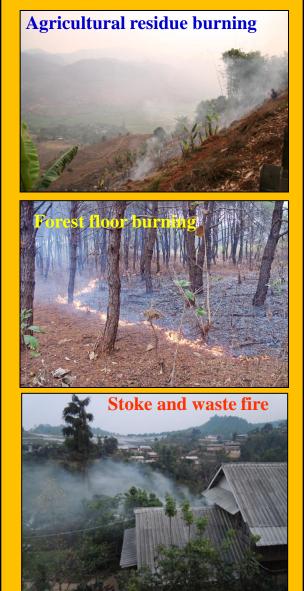
Particles Most abundant are silicate minerals. Range in size from <0.1 to 100 μm




### Grass Fire, Feb. 28, 2009

Fairiegoodmother/Dreamstime.com


## **Biomass-Burning Emission**


- Burning of evergreen forests, deciduous forests, woodlands, grasslands, agricultural land either to clear land, stimulate grass growth, manage forest growth, or satisfy a ritual.
- Gas constituents CO(g)  $CO_2(g)$ CH<sub>4</sub>(g)  $NO_x(g)$ ROG  $SO_2(g)$
- Particle constituents
   Ash, plant fibers, soil dust, organic matter, soot (black carbon plus organic matter)
- Composition of soot
   High temperatures --> high ratio of BC:OM in soot

### **Biomass-burning haze in SEA**









### **Fossil Fuels**

#### • Coal

Combustible brown-to-black carbonaceous sedimentary rock formed by compaction of partially decomposed plant material. Stages of coal metamorphosis Peat (unconsolidated, brown-black) Peat coal (consolidated, brown-black) 泥煤 Lignite coal (brown-black) 褐煤

Bituminous (soft) coal (dark brown to black) 煙煤 Anthracite (hard) coal (black) 無煙煤

#### • Oil (petroleum)

Natural greasy, viscous, combustible hydrocarbon liquid that forms from geological-scale decomposition of plants and animals.

## Fossil-Fuel Combustion Emission

• Gases NO<sub>x</sub>(g), ROG(g), CO(g), CO<sub>2</sub>(g), CH<sub>4</sub>(g), SO<sub>2</sub>(g)

Particles
 Soot (BC+OM), OM alone, SO<sub>4</sub><sup>2-</sup>, metals, fly ash

 Fly ash Contains O, Si, Al, Fe, Ca, Mg.

#### **Fossil-Fuel Soot Emissions**



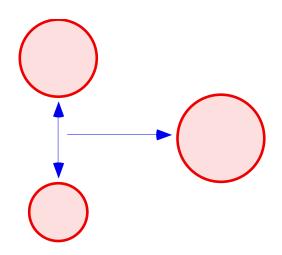
Srecko/Kenneth Sponsler/Efired/Dreamstime.com.

| Industrial Emission          |                                                      |  |
|------------------------------|------------------------------------------------------|--|
| Source                       | Metals in Fly Ash                                    |  |
| Smelters                     | Fe, Cd, Zn                                           |  |
| Oil-fired power plants       | V, Ni, Fe                                            |  |
| Coal-fired power plants      | Fe, Zn, Pb, V, Mn, Cr, Cu, Ni, As,<br>Co, Cd, Sb, Hg |  |
| Municipal waste incineration | Zn, Fe, Hg, Pb, Sn, As, Cd, Co, Cu,<br>Mn, Ni, Sb    |  |

Steel-mill furnaces

Fe, Zn, Cr, Cu, Mn, Ni, Pb

Table 5.5


### **Miscellaneous Particle Sources**

**Tire-rubber** particles Pollen **Spores Bacteria** Viruses **Plant debris Meteoric debris** 

#### **Processes Affecting Particle Evolution**

- Emission
- Homogeneous nucleation
- Coagulation
- Growth
  - **Condensation/evaporation**
  - **Deposition/sublimation**
  - **Dissolution**, dissociation, hydration
  - **Solid precipitation**
- Dry deposition
- Sedimentation
  - Rainout
    - Washout

### Coagulation



$$\frac{\P n_{\mathrm{u}}}{\P t} = \frac{1}{2} \begin{array}{c} \overset{\mathrm{u}}{\overset{\mathrm{u}}{\mathbf{0}}} b_{\mathrm{u}-\overline{\mathrm{u}},\overline{\mathrm{u}}} n_{\mathrm{u}-\overline{\mathrm{u}}} n_{\overline{\mathrm{u}}} \, \mathrm{d}\overline{\mathrm{u}} - n_{\mathrm{u}} \begin{array}{c} \overset{\mathrm{W}}{\overset{\mathrm{W}}{\mathbf{0}}} b_{\mathrm{u},\overline{\mathrm{u}}} n_{\overline{\mathrm{u}}} \, \mathrm{d}\overline{\mathrm{u}} \quad (5.2) \\ 0 \end{array}$$



Occurs when two particles collide and stick together (coalesce). Reduces number concentration but conserves volume concentration

#### **Classic coagulation mechanisms**

**Additional mechanisms** van der Waals forces ects Fractal geometry

### **Effect of Brownian Coagulation**

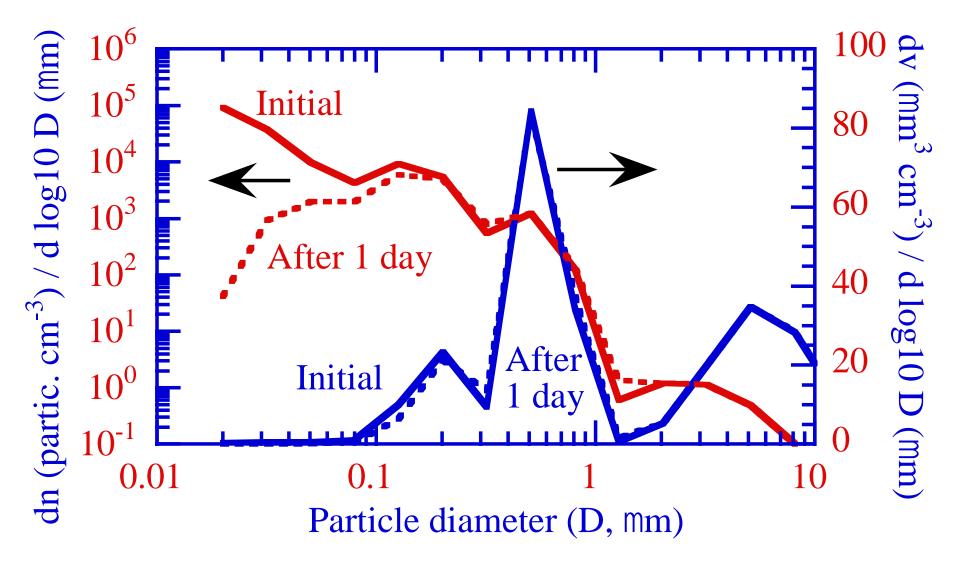
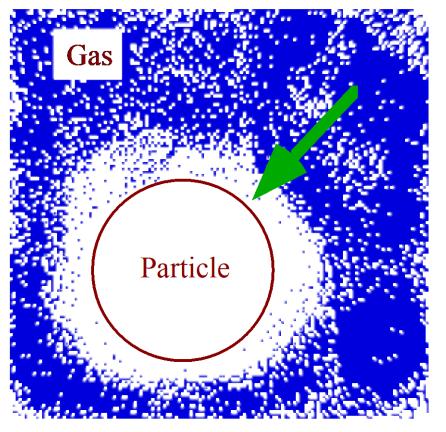




Figure 5.10

### **Condensation/Evaporation**

#### Condensation



Evaporation

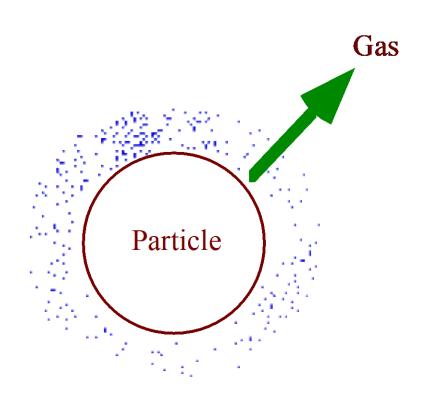


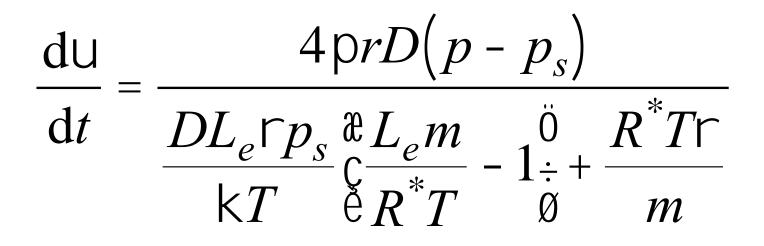

Figure 5.11

## **Condensing Gases**

Condensation occurs primarily on accumulation mode since it contains the largest surface area concentration of all modes.

#### Water vapor

Condenses on accumulation and coarse-mode particles to form cloud drops


#### Sulfuric acid

Condensation onto accumulation mode affects visibility

#### High-molecular weight organic gases

Products of toluene, xylene, alkylbenzene, alkane, alkene, biogenic hydrocarbon oxidation condense onto accumulation mode primarily.

### **Condensation/Evaporation Equation**



## **Dissolution**

#### Dissolution

Process by which a gas diffuses to and dissolves in a liquid on a particle surface.

Solvent A liquid in which a gas dissolves

Solute

Gas, liquid, or solid that dissolves in a solvent

Solution

One or more solutes plus the solvent.

Common dissolving gases HCl(g), HNO<sub>3</sub>(g), NH<sub>3</sub> (g), SO<sub>2</sub>(g)

### **Dissociation**

### Dissociation

Breakdown of dissolved molecules into ions.

### Cations Positively-charged ions (e.g., H<sup>+</sup>, Na<sup>+</sup>, K<sup>+</sup>, Ca<sup>2+</sup>)

### Anions

Negatively-charged ions (e.g., OH<sup>-</sup>, Cl<sup>-</sup>, NO<sub>3</sub><sup>-</sup>, HSO<sub>4</sub><sup>-</sup>, SO<sub>4</sub><sup>2-</sup>)

### Electrolyte

Substance that undergoes partial or complete dissociation (e.g., NH<sub>4</sub>NO<sub>3</sub>, Na<sub>2</sub>SO<sub>4</sub>, HCl)

### **Dissolution/Dissociation**

Addition of acid to solution increases [H<sup>+</sup>], decreasing pH

Hydrochloric acid

 $\begin{array}{rcl} HCl(g) & \longrightarrow & HCl(aq) & \longrightarrow & H^+ & + & Ct \\ Hydrochloric & Dissolved & Hydrogen & Chloride \\ ac id gas & hydrochloric & ac id & ion & ion \end{array}$ 

Nitric acid

 $HNO_3(g)$  $HNO_3(aq)$  $H^+ + NO_3^-$ NitricDissolvedHydrogenacid gasnitric acidion

(5.6) - (5.8)



Measure of the concentration of hydrogen ions (H<sup>+</sup>) in solution

$$pH = -log_{10}[H^+]$$
 (5.4)

[H<sup>+</sup>] = molarity (M, moles of H<sup>+</sup> per liter of solution)

**Higher [H<sup>+</sup>] --> lower pH --> more acidic solution** 



In dilute water, the only source of H<sup>+</sup> is

$$H_2O(aq) \implies H^+ + OH^-$$
Liquid Hydrogen Hydroxide  
water ion ion
(5.5)

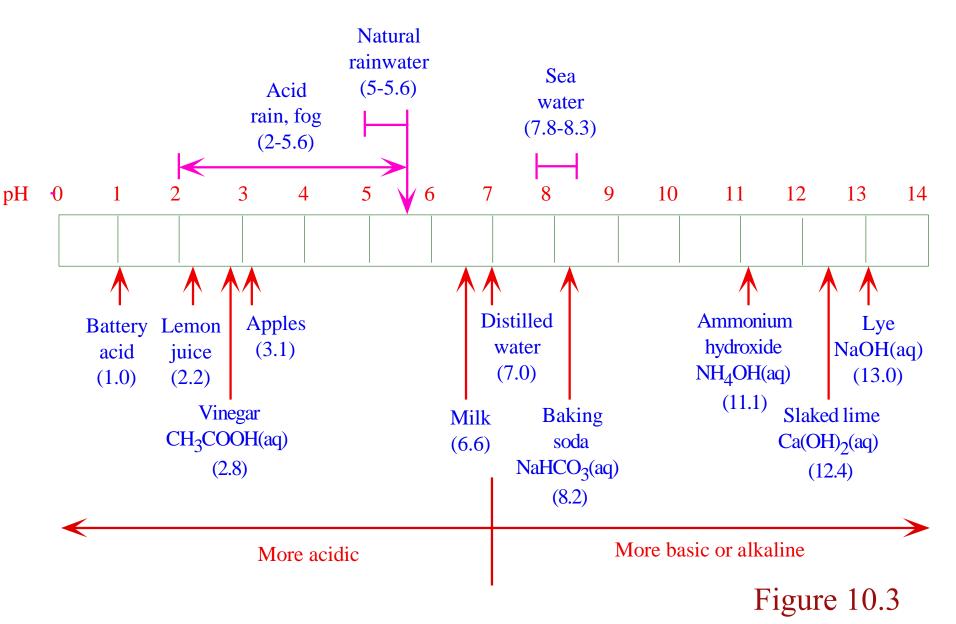
 $[H^+][OH^-] = 10^{-14} M^2 -> [H^+] = [OH^-] = 10^{-7} M$ 

 $--> pH = -log_{10}[10^{-7}M] = 7$ 

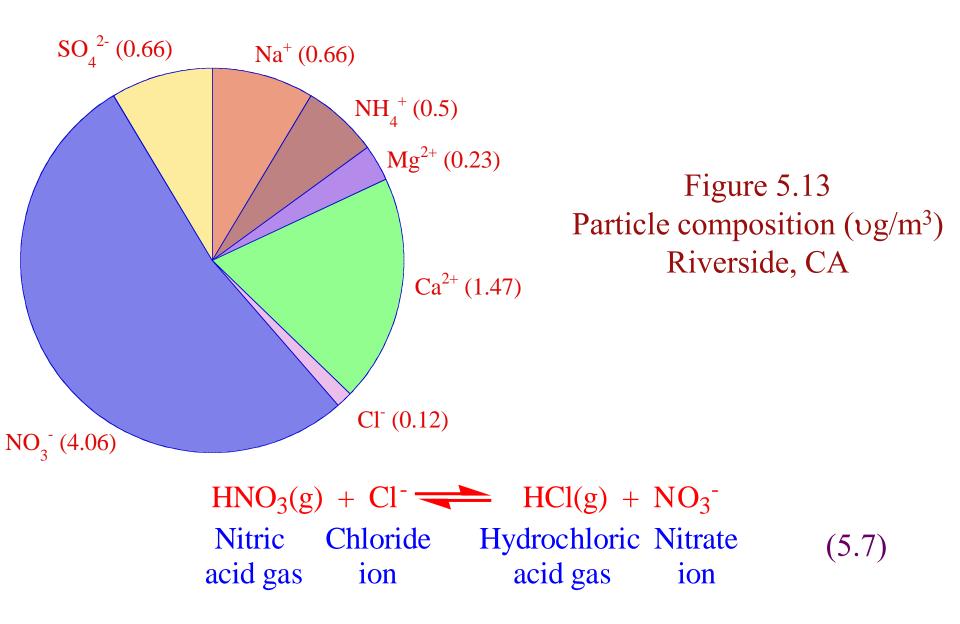
### Acid/Base

### Acid

Substance that, when added to a solution, dissociates, increasing [H<sup>+</sup>], decreasing pH


Strong acid: Substance that dissociate readily (e.g., H<sub>2</sub>SO<sub>4</sub>, HCl, HNO<sub>3</sub>)

Weak acid: Substance that dissociate less readily (e.g.,  $H_2CO_3$ )


### Base (alkali)

Substances that, when added to a solution, reduce  $[H^+]$ , increasing pH. (e.g., NH<sub>3</sub>, Ca(OH)<sub>2</sub>)

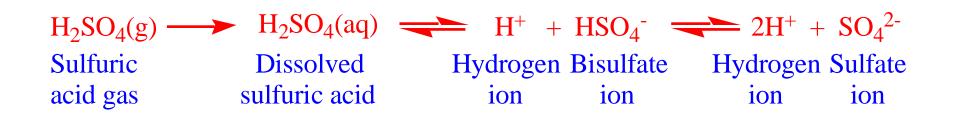
## pH Scale



## **Sea-Spray Acidification**

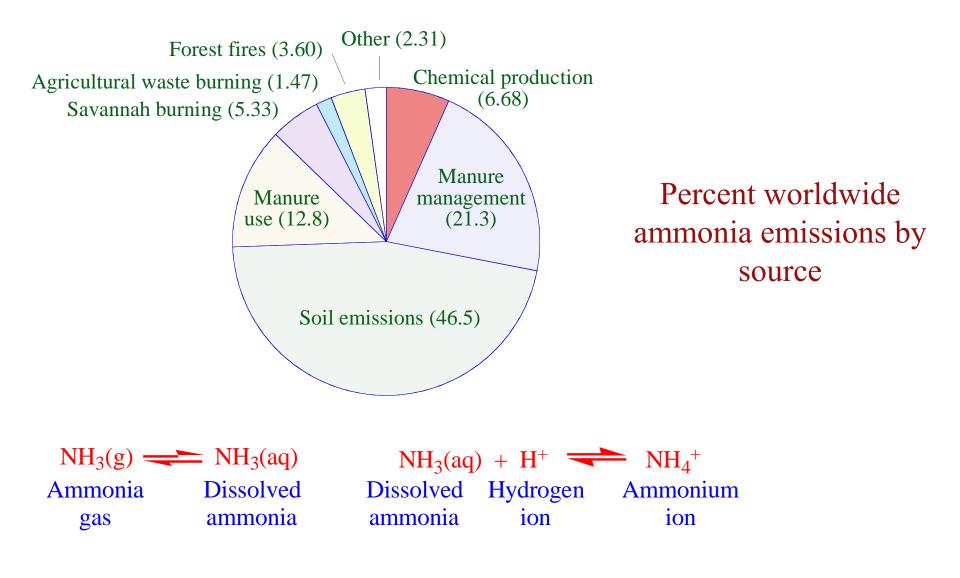


### **Soil-Particle Acidification**


### Addition of acid to calcite-containing soil dust removes carbonate ion

 $\begin{array}{cccc} CaCO_{3}(s) + 2HNO_{3}(g) &= & Ca^{2+} + 2NO_{3}^{-} + CO_{2}(g) + H_{2}O(aq) \\ Calcium & Nitric & Calcium & Nitrate & Carbon & Liquid \\ carbonate & acid gas & ion & ion & dioxide gas & water \end{array}$ 

## **Hydration**


- Bonding of liquid water to solute (anions, cations, or undissociated molecules).
- The higher the relative humidity and greater the quantity of solute, the greater the liquid water uptake due to hydration.
- Hydration responsible for swelling of particles sufficiently to cause a haze when the relative humidity is below 100 percent.

## Sulfuric Acid Condensation/Dissociation



#### **Condensation occurs primarily on accumulation mode**

## **Ammonia Dissolution/Dissociation**



## **Solid Precipitation**

When the relative humidity decreases, ions in solutions may combine (crystallize) to form solids (solid precipitation). Solids may also form by chemical reaction on the surface of particles.

Common solid formation reactions  $NH_4^+ + NO_3^- \iff NH_4NO_3(s)$  ammonium nitrate  $2NH_4^+ + SO_4^{2-} \iff (NH_4)_2SO_4(s)$  ammonium sulfate  $Ca^{2+} + SO_4^{2-} + 2H_2O(aq) \iff CaSO_4 - 2H_2O(s)$  gypsum

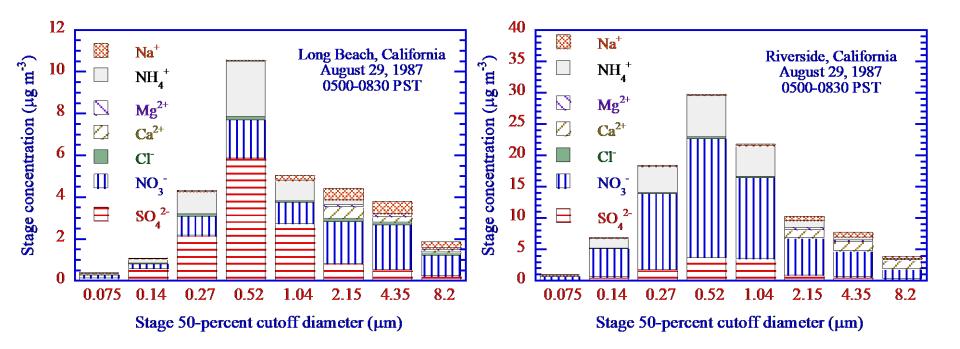
## **Particle Health Effects**

### Hazardous compounds in particles

Benzene, PAHs, metals, sulfur compounds

Metals

Lung injury, bronchio constriction, increased infection

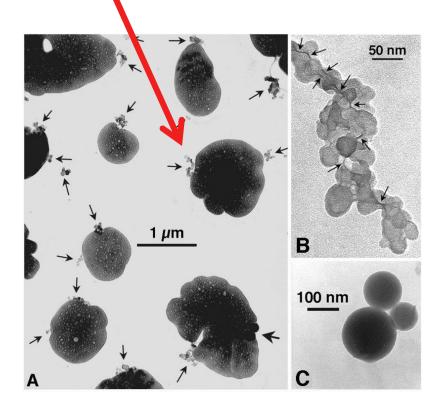

### **PM<sub>10</sub>**

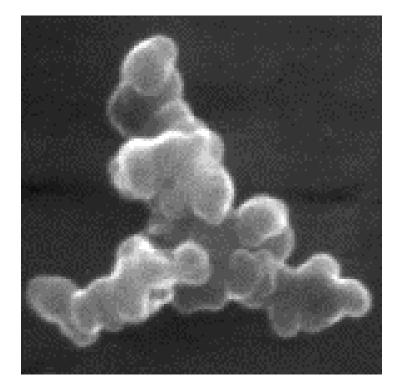
Asthma, chronic obstructive pulmonary disease, increased mortality, higher hospitalization and health-care visits for respiratory and cardiovascular disease. May be no low threshold for health-related problems due to  $PM_{10}$ .

### $\overline{PM}_{2.5}$

More respiratory illness and premature death than larger particles. Long-term city exposure may reduce life by two years. **Total air pollution mortality (due mostly due to particles)**2.5-3 million deaths/yr worldwide from air pollution; 1.6 million in due to indoor burning of biomass, coal.

### **Aerosol Particle Composition vs. Size**

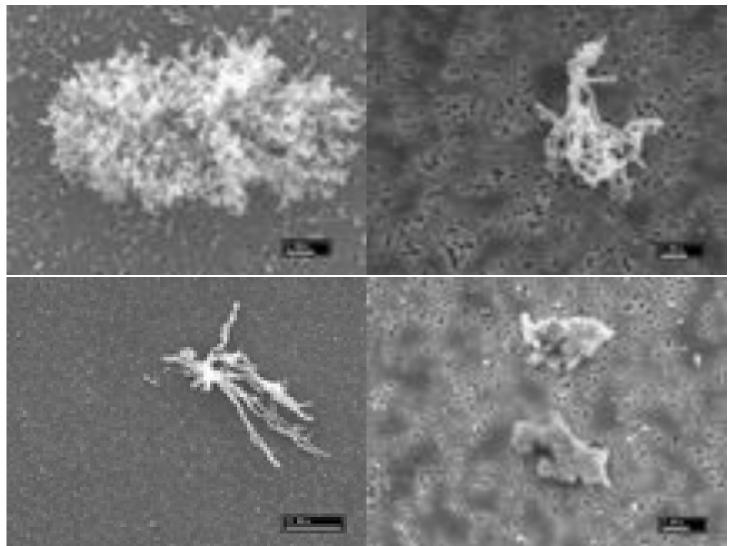




# **Particle Mixing State**

- External mixture Particle composition is the same as that when the particle was emitted.
- Internal mixture Particle composition differs from that when it was emitted due to condensation, dissolution, coagulation, and other physical processes affecting composition.

## Internally- and Externally-Mixed Soot Particles

#### Soot inclusion






#### Pósfai et al. (1999)

#### Strawa et al. (1999)

## Ash, Combusted Plant Fiber, Elongated Ash, Soil Dust



Scanning electron microscopy (SEM) images

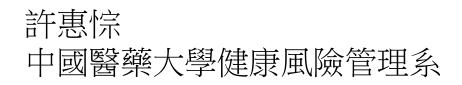
Reid and Hobbs (1998)

## Lungs of Teenage non-smoking Teenager in Los Angeles, 1970s

SCAQMD



台灣風險分析學會


**Taiwan Chapter of Society for Risk Analysis** 

# Global Perspectives of Risks

2015 年第 2 期: WHO 最新的報告指出,空污造成歐洲國家居民死亡

與疾病的經濟負荷為每年1.6兆美元

Release: May 4, 2015

